Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578956

RESUMO

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

2.
ACS Omega ; 3(2): 2304-2311, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458530

RESUMO

Surface-engineered nanostructured nonpolar (112̅0) gallium nitride (GaN)-based high-performance ultraviolet (UV) photodetectors (PDs) have been fabricated. The surface morphology of a nonpolar GaN film was modified from pyramidal shape to flat and trigonal nanorods displaying facets along different crystallographic planes. We report the ease of enhancing the photocurrent (5.5-fold) and responsivity (6-fold) of the PDs using a simple and convenient wet chemical-etching-induced surface engineering. The fabricated metal-semiconductor-metal structure-based surface-engineered UV PD exhibited a significant increment in detectivity, that is, from 0.43 to 2.83 (×108) Jones, and showed a very low noise-equivalent power (∼10-10 W Hz-1/2). The reliability of the nanostructured PD was ensured via fast switching with a response and decay time of 332 and 995 ms, which were more than five times faster with respect to the unetched pyramidal structure-based UV PD. The improvement in device performance was attributed to increased light absorption, efficient transport of photogenerated carriers, and enhancement in conduction cross section via elimination of recombination/trap centers related to defect states. Thus, the proposed method could be a promising approach to enhance the performance of GaN-based PD technology.

3.
Phys Chem Chem Phys ; 19(13): 8787-8801, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28294263

RESUMO

We report formation of aligned nanostructures on epitaxially grown polar and nonpolar GaN films via wet chemical (hot H3PO4 and KOH) etching. The morphological evolution exhibited stress relaxed faceted nanopyramids, flat/trigonal nanorods and porous structures with high hydrophilicity and reduced wettability. The nanostructured films divulged significant suppression of defects and displayed an enhanced intensity ratio of the near band edge emission to the defect band. Extensive photoemission analysis revealed variation in oxidation state along with elimination of OH- and adsorbed H2O molecules from the chemically modified surfaces. Fermi level pinning, and alteration in the surface polarity with substantial changes in the electron affinities were also perceived. The temperature dependent current-voltage analysis of the nanostructured surfaces displayed enhancement in current conduction. The in-depth analysis demonstrates that the chemically etched samples could potentially be utilized as templates in the design/growth of III-nitride based high performance devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...